构设有太史局。因此,天资聪颖、求知若渴的秦九韶有机会阅读大量典籍,熟悉建筑、修造、治河等方面的土木工程知识,并向他父亲的属官中负责测验天文、考定历法的学者们学习天文历法知识。他后来在《数书九章》序中说“早岁侍亲中都,因得访习于太史”,即指这段时间的事。秦九韶又曾向“隐君子”学习数学。他还向著名词人李刘学习骈骊诗词。通过这一时期的学习,秦九韶的学识日趋渊博。周密在《癸辛杂识续集》中称他“性极机巧,星象、音律、算术,以至营造等事,无不精究”,“游戏、毬、马、弓、剑,莫不能知”。
宝庆元年(225)六月,秦季槱被任命为潼川(今四川三台)知府,七月赴任。秦九韶于是随父回到四川。次年正月十二日,秦氏父子来到涪州(今重庆涪陵),与涪州守李踽及其两个儿子同游,观赏长江石鱼,并刻石题名,后为姚觐光收入《涪州石鱼文字所见录》,成为一则重要史料。
在潼川,秦九韶曾当过县尉。这期间,李刘曾邀请他到国史院校勘书籍文献,但未成行。
端平三年(23),元兵攻入四川,嘉陵江流域兵祸不断,秦九韶不得不经常参与军事活动,饱受战争之苦。他后来在《数书九章》序中回忆道“际时狄患,历岁遥塞,不自意全于矢石间,尝险罹忧,荏苒十祀,心槁气落。”数年后,秦九韶被迫再次离川,往东南避难。先后担任过蕲州(今湖北蕲春)通判及和州(安徽和县)守,最后定居湖州(今属浙江)。有史料记载,秦九韶是个自私、专横和唯利是图的人,抑或战争改变了他的天性。与他同时代的刘克庄在《缴秦九韶知临江军奏状》中说他“倅蕲妄作,几激军变;守和贩鹾,抑卖于民”。周密说他“既出东南,多交豪富”;在湖州的住家,建堂于苕水之上,“极其宏敞,后为列屋以处秀姬,管弦、制乐、度曲,皆极精妙,用度无算”。非利用职权中饱私囊者,岂能如此奢华?淳祐四年(244)八月,秦九韶以通直郎为建康府(今江苏南京)通判,十一月,因母丧离任,回湖州守孝。在此期间,秦九韶可谓“无丝竹之乱耳,无案牍之劳形”,专心学问,埋头著书。淳祐七年(247)九月,完成数学名著《数书九章》。由于在天文历法上的造诣,次年他被推荐到朝廷,受到皇帝召见,因而得以阐述自己的见解,并呈上他的奏稿及《数学大略》(即《数书九章》)书稿。
孝满书成后的秦九韶不甘寂寞,又开始向往功名利禄。淳祐十年(250),他往投吴潜幕。吴潜(9—22),号履斋,南宋重臣,主战派首领。秦九韶与吴潜很有交情,他在湖州的居家即从吴处得到的地皮。宝祐二年(254),秦九韶到建康,任沿江制置司参议,但不久去职,回湖州家居。此后,他去扬州攀附当朝权臣贾似道。宝祐六年(258)正月,贾似道荐秦九韶于广帅李曾伯,时逢琼州守阙,于是李曾伯便命其暂任琼州守,但三个月后被免职。刘克庄说秦九韶“到郡(琼州)仅百日许,郡人莫不厌其贪暴,作卒哭歌以快其去”。周密则说他“至郡数月,罢归,所携甚富”。离琼州回湖州后,秦九韶又投奔吴潜,得荐,开庆元年(259)任司农寺丞,因不满贾似道专权,被罢。景定元年(20),又任命为知临江军(今江西清江),再次遭罢。不久,吴潜罢相,被贬潮州。秦九韶受到株连,也贬梅州(今广东梅县)做地方官,他“力政不辍”。约在景定二年(2),病卒于任所,年0岁。
第二节对数学的贡献《数书九章》秦九韶恶劣的个人品行,与杰出的数学才能是不相称的。因此有人因他的数学成就而为其个人品行辩护,如清代数学家焦循在《天元一释》卷下说“秦九韶为周密所丑诋,至于不堪,而其书亦晦而复显。密以填词之才,实学非其所知。即所称与吴履斋交稔,为贾相窜于梅州,力政不辍,则秦之为人亦瑰奇有用之才也。”与此同时,也有人因他的恶劣人品而贬低其数学成就,如余嘉锡《南宋算学家秦九韶事迹考》中说他“虽能治天算,多技能,不过小人之才耳,何足道哉!”对秦九韶,也有较客观地评价“有才有学的人未必有德,我们读《数书九章》,不能不表扬秦九韶在数学方面的贡献,但是论他的为人,也应符合当时的历史实际。”《数书九章》,是秦九韶勤奋学习、苦心钻研和多年积累的数学成就的结晶,是堪与数学名著《九章算术》相媲美的。这部著作,南宋时称为《数学大略》或《数术大略》,明《永乐大典》和清《四库全书》皆题称《数学九章》。明季常熟赵氏脉望馆藏有另一抄本,万历时赵琦美为其撰写跋文始称《数书九章》。后来清道光时按赵抄本校刻的《宜稼堂丛书》本流传较广,遂成为现今的通称。该书共8卷,8题,分为9类,每类9题,主要内容是一、大衍类一次同余组的解法;二、天时类历法推算、雨雪量的计算;三、田域类土地面积;四、测望类勾股、重差等测量问题;五、赋役类田赋、户税;六、钱谷类征购米粮及仓储容积;七、营建类建筑工程;八、军旅类兵营布置和军需供应;九、市易类商品交易和利息计算。
每题答案之后都有“术”说明解题方法,“术”后有“草”说明演算步骤,钱宝琮《秦九韶〈数书九章〉研究》,载钱宝琮等著《宋元数学史论文集》,科学出版社9年版,第2页。
有的题目还画有图。《数书九章》中的两项最重要的成就是正负开方术(高次方程数值解法)和大衍求一术(一次同余组解法)。
在数学发展史上,古典代数学的中心课题是方程论。中国古代的方程论,不论是现代意义下的开方,还是解一般的高于二次的一元方程都被称为开方。从《周髀算经》、《九章算术》,到5世纪的祖冲之和7世纪的王孝通,已经解决了开平方、开立方,以及二次三项方程和正系数三次方程求正根问题。世纪,贾宪又创造了一种新的开方法——增乘开方法,通过随乘随加导出减根方程,逐步求出正系数高次方程的正根。2世纪,数学家刘益提出“正负开方术”,并突破了方程系数全都为正的限制。但刘益的方法并不是增乘开方法。秦九韶在前人工作的基础上,把以增乘开方法为主体的高次方程数值解法发展到十分完备的程度。他的方程系数可正可负,可为分数,也可为小数,在有理数范围内没有限制,但规定常数项总为负。亦即解决了形如下列的数字方程求解问题其中书九章》8个问题中,用