行星系的现是依靠多普勒效应,通过观测恒星光谱的周期性变化,分析恒星运动度的变化情况,并据此推断是否有行星存在,并且可以计算行星的质量和轨道。应用这项技术只能现木星级的大行星,像地球大小的行星就找不到了。
此外,关于类似太阳系的天体系统的研究的另一个目的是探索其他星球上是否也存在着生命。
提丢斯数列
提丢斯—波得定则(titius—bode1a),简称“波得定律”,是关于太阳系中行星轨道的一个简单的几何学规则。它是在1766年德国的一位中学教师戴维·提丢斯(johaius,1729~1796)现的。后来被柏林天文台的台长波得(johabode)归纳成了一个经验公式来表示。
行星同太阳平均距离的经验定律。1766年﹐德国人提丢斯提出﹐取一数列o﹐3﹐6﹐12﹐24﹐48﹐96﹐192……﹐然后将每个数加上4﹐再除以1o﹐就可以近似地得到以天文单位表示的各个行星同太阳的平均距离。1772年﹐德国天文学家波得进一步研究了这个问题﹐表了这个定则﹐因而得名为提丢斯—波得定则﹐有时简称提丢斯定则或波得定则。这个定则可以表述为﹕从离太阳由近到远计算﹐对应于第n个行星(对水星而言﹐n不是取为1﹐而是-∞)﹐其同太阳的距离a=o.4+o.3x2^(n-2)(天文单位)
行星公式推得值实测值
水星o.4o.39
金星o.7o.72
地球kxs51.com
火星1.61.52
小行星带2.82.9
木星5.25.2o
土星1o.o9.54
天王星19.619.18
海王星38.83o.o6
冥王星77.239.44
注:冥王星于2oo6年被降级为矮行星,九大行星修订为八大行星,冥王星仍属太阳系。
&1t;ahref=.>.
------------
15章 :远征星途之虚空带柯伊伯带
全称为艾吉沃斯-柯伊伯带(英语:edgeorth-kuiperbe1t;ekb,一般简称作柯伊伯带,或译作古柏带、库柏带等)
黄色点环为柯伊伯带(kuiperbe1t)。
柯伊伯带
柯伊伯带位于太阳系的尽头,其名称源于荷兰裔美籍天文学家柯伊伯(kuiper)。早在上世纪5o年代,柯伊伯和埃吉沃斯(edgeorth)就预言:在海王星轨道以外的太阳系边缘地带,充满了微小冰封的物体,它们是原始太阳星云的残留物,也是短周期彗星的来源地。
第一个柯伊伯带天体(kbo);如今已有约1ooo个柯伊伯带天体被现,直径从数千米到上千公里不等。许多天文学家认为:由于冥王星的个头和柯伊伯带中的小行星大小相当,所以冥王星应该被排除在太阳系行星之外,而归入柯伊伯带小行星的行列当中;而冥王星的卫星则应被视作其伴星。不过,因冥王星是在柯伊伯带理论出现之前被现的,所以传统上仍被认为是行星。无论如何,柯伊伯带的存在现已是公认的事实,但柯伊伯带为什么会存在等种种疑问成为太阳系形成理论的许多未解谜团的一部分。
在距离太阳4o~5o个天文单位的位置,低倾角的轨道上,过去一直被认为是一片空虚,太阳系的尽头所在。但事实上这里满布着大大小小的冰封物体,热闹无比,就是柯伊伯带。柯伊伯带是现时我们所知的太阳系的边界,是太阳系大多数彗星的来源地。柯伊伯带上的这些物体是怎么成形的呢?如果按照行星形成的吸积理论来解释,那就是他们在绕日运动的过程中生碰撞,互相吸引,最后粘附成一个个大小不一的天体,形成现在的样子。
可是这个理论有个致命的问题!如果在柯伊伯带目前的位置,要形成直径上千公里的天体,那么柯伊伯带上物体的总质量至少要是地球质量的1o倍以上。可是目前推估的柯伊伯带总质量,不过只有地球质量的十分之一。其他99%的质量,难道凭空消失了?
为了解开这个谜团,几年来陆续有好几个理论出现,可惜它们都有一些明显的限制。如今,美国西南研究院(rbide11i教授共同提出了一个理论,认为柯伊伯带天体是在距离太阳更近的位置成形后,再被海王星一个个甩出去的,因此躲开了柯伊伯带总质量不足的问题。
起源
外行星和柯伊伯带的摹拟:(a)木星和土星2:1共振之前,(b)在海王星轨道迁徙之后,柯伊伯带天体被散射至太阳系内(c)柯伊伯带天体被木星排斥之后。柯伊伯带的复杂结构和精确的起源仍是不清楚的,因此天文学家在等待泛星计划(pan-starrs)望远镜巡天的结果,那些应该会揭露更多目前不知道的柯伊伯带天体,并在测量后对它们有更多的了解。[1]
柯伊伯带被认为包含许多微星,它们是来自环绕着太阳的原行星盘碎片,它们因为未能成功的结合成行星,因而形成较小的天体,最大的直径都小于3,ooo公里。
近代的计算机模拟显示柯伊伯带受到木星和海王星极大的影响,同时也认为即使是天王星或海王星都不是在土星之外的原处形成的,因为只有少许的物质存在于这些地区,因此如此大的天体不太可能在该处形成。换言之,这些行星应该是在离木星较近的地区形成的,但在太阳系早期演化的期间被抛到了外面。1984年,费南德兹和艾皮的研究认为与被抛射天体的角动量交换可以造成行星的迁徙[2]。终于,轨道的迁徙到达木星和土星形成2:1共振的确切位置:当木星绕太阳运转两圈,土星正好绕太阳一圈。引力如此的共振所产生的拉力,最终还是打乱了天王星和海王星的轨道,造成它们的位置交换而使海王星向外移动到原始的柯伊伯带,造成了暂时性的混乱[3]。当海王星向外迁徙时,它激和散射了许多外海王星天体进入更高倾角和更大离心率的轨道[4]。
然而,目前的模型仍然不能说明许多分布上的特征,引述其中一篇科学论文的叙述[5]:这问题继续挑战分析技术和最快的数值分析软件和硬件。
组织
以最完整的范围,包括远离中心最外侧的区域,柯伊伯带大约从3o天文单位伸展到55天文单位。然而,一般认为主要的部份(参考下文)只是从39.5天文单位的2:3共振区域延展到48天文单位的1:2共振区域。柯伊伯带非常的薄,主要集中在黄道平面上下1o度的范围内,但还是有许多天体散布在更宽广数倍的间内。总之,它不像带状而更像花托或甜甜圈(多福饼)[6]。而且,这意味着柯伊伯带对黄道平面有1.86度的倾斜[7]。
以半长轴为准的轨道分类。由于存在着轨道共振,海王星对柯伊伯带的结构产生了重大的作用。在与太阳系年龄比较的时标上,海王星的引力使在某些轨道上的天体不稳定,不是将她们送入内太阳系内,就是逐